来自某研究团队的研究人员针对非线性系统的控制难题,开发了一种创新的无源性设计方法。该研究通过构建稳定的无源状态观测器,实现了闭环系统的无源性,并提出了适用于时不变和时变Lipschitz系统的控制框架。研究成果简化了系统分析与设计流程,并在 ...
本文提出MLNFFD框架,通过低频粗配准与高频残差校正的双分支架构(U-Net+MLNF),结合多尺度隐式双域特征表示(MIDFR)和Lipschitz连续性约束,显著提升医学图像配准精度(DSC最高提升9%)和形变场平滑度,为手术导航等临床场景提供新解决方案。 Highlight亮点 我们 ...
Fourier analysis provides a powerful framework for decomposing functions into sums or integrals of sinusoidal components, thereby enabling the study of frequency content in signals. In tandem, ...
In the setting of a metric measure space (𝕏, d, μ) with an n-dimensional Radon measure μ, we give a necessary and sufficient condition for the boundedness of Calderón-Zygmund operators associated to ...
A complete proof of the trace theorem of Sobolev spaces on Lipschitz domains has not appeared in the literature yet. The purpose of this paper is to give a complete proof of the trace theorem of ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果